By Elizabeth Bach Ecosystem Restoration Scientist With 2020 drawing to a close, Nachusa science has several accomplishments to recognize:
Science PublicationsScientific publications are the product of years of hard work, collecting and analyzing data as well as writing the paper. I’d like to use this blog post to highlight some of this recently published research. It has been an exciting year for Dr. Holly Jones, Dr. Nick Barber, and their lab groups. Holly and Nick began research at Nachusa Grasslands in 2013 as new faculty at Northern Illinois University (Nick is now at San Diego State University). Their work investigates restoration outcomes related to planting age, prescribed fire, and grazing. In 2020, the team has published five papers:
The Wildlife Epidemiology Lab, led by Dr. Matt Allender, at the University of Illinois Urbana-Champaign has included Nachusa Grasslands as one of their sites in on-going health evaluations of wild turtle populations. Research scientist Dr. Laura Adamovicz has published three papers from her PhD dissertation:
Devin Edmonds, who is a graduate student with Dr. Michael Dreslik at UI-UC and the Illinois Natural History Survey, examined Reproductive output of ornate box turtles (Terrapene ornate) in Illinois, USA. This is the first assessment of ornate box turtle reproduction in Illinois. Meghan Garfinkel earned her PhD from University of Illinois-Chicago this spring. Her research quantified crop pest suppression by songbirds. She found Birds suppress pests in corn but release them in soybean crops within a mixed prairie/agriculture system. Additional data is needed to see if these results can be applied more broadly on the landscape and across years. These initial results indicate birds could provide sizable services to agricultural land around prairie habitat. Physlis Pischl, a PhD student at Northern Illinois University, performed an elegant analysis of Plastome phylogenomics and phylogenetic diversity of endangered and threatened grassland species (Poaceae) in a North American tallgrass prairie. The work showed endangered and threatened grass species were more closely related than expected and likely evolved together in specific grassland habitats. Destruction of those habitats have resulted in many closely related species all being endangered and threatened. Read more about this study. John Vanek shared his work with Dr. Rich King surveying snake communities at Nachusa in this recent blog. John also published Observations of American Badgers, Taxidea taxus (Schreber, 1777) (Mammalia, Carnivora), in a restored tallgrass prairie in Illinois, USA, with a new county record of successful reproduction. While it is no surprise to find badgers at Nachusa, this is a new confirmed report of breeding badgers. Hana Thixton found Further evidence of Ceratobasidium serving as the ubiquitous fungal associate of Platanthera leucophaea (Orchidaceae) in the North American tallgrass prairie (open access) in her MSc research with Dr. Betsy Esselman at Southern Illinois University Edwardsville. Ceratobasidium fungi were by far the dominant fungal partner for EPFO, and genetic diversity of those strains was limited, indicating the fungal partners were consistent across sites. Drew Scott found Plant diversity decreases potential nitrous oxide emissions from restored agricultural soil in this research as part of his PhD dissertation at Southern Illinois University Carbondale. In this study, he found nitrous oxide emissions, a potent greenhouse gas that contributes to climate change, from soils at Nachusa with high plant diversity were about seven times lower than from areas with low plant diversity. View the complete list of Nachusa publications.
0 Comments
By Dee Hudson and Charles Larry Spring Summer Autumn Winter
By Chris Helzer Because they can’t run away, plants may seem helpless against the many large and small herbivores that like to eat them. Nothing could be further from the truth. Many plants have physical defenses such as thorns or stiff hairs to deter animals from eating them. Grasses contain varying levels of silica, which can increase the abrasiveness of their leaves and help make them more difficult to eat and digest. In addition, the chemical makeup of many plants helps make them unpalatable or toxic to potential herbivores. While herbivory is certainly a major threat, plants also have a variety of defenses against pathogens (diseases). If you’re interested in more background on this topic, here is a really nice overview of plant defenses against both diseases and herbivores. Within the last few years, there have been a couple of published studies that highlight some fantastic strategies plants use to defend themselves. In the first of those, German scientists studied a wild tobacco plant and found that when it is attacked by a caterpillar the plant releases a chemical that, in turn, attracts a predatory bug to eat the caterpillar. The production of the bug-attractant is triggered by the caterpillar’s saliva. Essentially, then, the caterpillar sets off an alarm that calls in predators to eat it. How cool is that? A second study, done at the University of Missouri-Columbia, found that a species of mustard plant could detect the vibration signature of a caterpillar chewing on one of its leaves. When the plant identified that signal, it increased production of chemicals that make its leaves taste bad to herbivores. Researchers were able to replicate and reproduce the vibrations and trigger the response in the lab. They also showed that other kinds of vibrations did not cause the plants to defend themselves, so the chemical production appeared to be a direct response to herbivory. These and other research projects help show that plants are not at all defenseless. Not only do they have strategies to make themselves more difficult to eat (toxins, spines, etc.), they can also respond when they are attacked. In prairies, there are numerous examples of plants defending themselves in interesting ways, including sunflowers that produce sweet stuff to attract predatory ants and grasses that increase their silica content under intensive grazing pressure. Of course, herbivores have evolved their own tricks to counter all those plant defenses. Several insect species, for example, have developed ways to deal with the toxins produced by milkweed plants and happily munch away on leaves that would kill other insects. Now its the milkweed’s turn to (through natural selection and over many years) come up with a response to that response. The world is pretty fascinating, isn’t it? So, the next time you’re walking through peaceful-looking prairie on a pleasant morning, remember that those little plants you’re crushing beneath your feet may not be as helpless as they appear. Sure, those plants are mostly fighting back against animals trying to eat them, but you may still find yourself an accidental victim of their defense strategies. Experienced hikers are well acquainted with the abrasive edges of grass leaves and the sharp spines on species such as roses and cacti. At one time or another, most of us have blundered into a patch of nettles or poison ivy. No, plants are certainly not helpless. Let’s just be thankful they haven’t (yet) figured out how to chase us down. A huge thank you to Chris Helzer for authoring this week's blog. Chris is The Nature Conservancy’s Director of Science in Nebraska. To enjoy more photos and discussions about prairie ecology, restoration, and management, follow Chris's blog "The Prairie Ecologist."
In the fall I look forward to the incredible display from the native prairie grasses. Up to this point, the grasses have remained rather unobtrusive, but in the fall they step out of the background to claim our attention. Although I enjoy them all, the little bluestem grass is definitely my favorite. Little bluestem can be found throughout the prairie, but right now this grass is very noticeable if you to look the hills. Many of Nachusa’s knobs and hills are blanketed in an orange–red, and that color is from the . . . little bluestem grass!! In addition, throughout the winter, the grass will retain this energetic color and stand out beautifully in the snow. As the autumn winds blow, the little bluestem grass undulates like waves in the ocean, as seen in the photo above in the upper left. It is mesmerizing to watch it ripple across a vast expanse. The view is from the top of Fameflower Knob in early fall (notice the leaves still on the trees). As a photographer, I love to use little bluestem as a backdrop for the goldenrods and asters that bloom in the fall. Then, as the season progresses, the grass creates a wonderful texture and contrasting color for the changing leaves of many other forbs. It is surprising to view the seeds up close through a macro lens. Look at all that white feathery fluff decorating the seedstalk! So intricate with so many fine hairs. Come visit Nachusa and enjoy a late fall hike through the grasses. I recommend the Clear Creek Knolls hike, with a climb to the top of Fameflower Knob. The hike trailhead is accessible from the small parking lot on Lowden Road, just south of Flagg Road or 1.4 miles north of the visitor kiosk. Once you arrive at the base of the hill, there is no path, so make your own! Just avoid walking on top of the sandstone, for it crumbles easily. Give the short climb a try and if you do, leave us a comment on this blog about your adventure!
Today’s author is Dee Hudson, a photographer and volunteer for Nachusa Grasslands. To see more prairie images, visit her website at www.deehudsonphotography.com. |
Blog CoordinatorDee Hudson
I am a nature photographer, a freelance graphic designer, and steward at Nachusa's Thelma Carpenter Prairie. I have taken photos for Nachusa since 2012. EditorJames Higby
I have been a high school French teacher, registered piano technician, and librarian. In retirement I am a volunteer historian at Lee County Historical and Genealogical Society. Categories
All
Archives
February 2021
|
CONNECT WITH US |
2075 Lowden Road | Franklin Grove, IL 61031 | Contact Us
|