By Peter Guiden, PhD Post-Doctoral Fellow, Northern Illinois University An ecosystem is a complex, wonderful thing. It represents many species of plants, animals, and micro-organisms interacting with each other and the air, soil, and water. It is greater than the sum of its parts. And in restoration ecology, a central goal is to put degraded ecosystems back together. However, doing so is often a challenging process—that same complexity that makes an ecosystem beautiful can also make it difficult to manage. A logical starting point is to restore the native plant community. Plants play so many important roles in an ecosystem: they provide habitat and food for animals, they exchange nutrients with microorganisms, help develop soil, and link aboveground and belowground worlds. Every plant species plays a different role in the environment, so land managers often aim to restore as many native plant species as possible, leading to high biodiversity. At Nachusa, prescribed fire and bison reintroduction are used to meet this goal, knocking back the most competitive plant species and allowing many species to coexist. Hopefully, these diverse plant communities support many diverse animal species…right? It turns out that this question isn’t often asked. It’s difficult to answer, because scientists often specialize on one group of organisms, and individually lack the tools to measure how the ecosystem as a whole responds to management. Answering this question requires assembling an Avengers-style team of researchers, who can complement each other’s interests and expertise, at the same place and time. Luckily, the Nachusa community provided an opportunity for this to happen. Through collaboration between Nachusa, Dr. Holly Jones’ Evidence-based Restoration Lab at Northern Illinois University, Dr. Nick Barber’s Community Ecology & Restoration Lab at San Diego State University, and Dr. Rich King’s lab at Northern Illinois University, we could start to look at links between plants and animals. Each of these groups brings a unique skill set to the table. Dr. Jones and her students study plants and small mammals such as wild mice and voles. Dr. Barber and his students study plants, ground beetles, and dung beetles. Dr. King and his students study larger wildlife, such as snakes. Each of these groups has collected data on these animal communities over the past decade at Nachusa, including how many species occur in these study sites, and in what abundance. This gave us an opportunity to combine our data, and ask some broad, general questions about how restoration works. Here’s a link to the study we did, if you’re interested in the technical details. We wanted to know whether the areas with the most plant biodiversity also had the most animal biodiversity, or if something else explained patterns in animal communities. If plant and animal biodiversity were linked, that would suggest that restoring diverse plant communities may lead to recovery across the ecosystem. However, if the link between plant and animal biodiversity isn’t strong, other management strategies may be needed to boost native animal species. We found that in general, the best explanation of animal biodiversity had little to do with plant biodiversity. For example, small mammal communities were most diverse in areas that hadn’t been burned for a few years, because species like voles make their habitat in thatch (dead plant litter). Similarly, snake communities were most diverse in older restorations, because certain species take a relatively long time to colonize new habitats. This isn’t to say that plant biodiversity is unimportant for animals: there were many cases where plant and animal biodiversity were linked. Small mammal communities were more diverse in habitats with a rich mixture of forbs and grasses, and the most diverse ground beetle communities were found in areas with many plant species. But on average, the effects of management on animal biodiversity were six times stronger than the effects of plant biodiversity. Why didn’t we find a strong link between plant and animal biodiversity at Nachusa? One potential explanation is our choice of study species. Snakes and beetles are carnivorous, while small mammals are opportunistic omnivores, eating both plants and animals. Perhaps animals that are strict herbivores (especially insects with very particular diets) would have been more responsive to plant diversity. But for our animals, the age or structure of the plant community seemed to be more important than the number of plant species present. It’s also important to point out that maximizing animal biodiversity may not be the most important goal in a restoration project. Protecting rare species (like the rusty patch bumblebee) or species that play an especially important role in the ecosystem (like large dung beetles that eliminate large volumes of bison dung) may take center stage. In cases where restoring animal biodiversity is important, however, it may be necessary to consider how land management affects both plants and animals. One key take-home message of this study is that restoration really works. Through the hard work of land managers, volunteers, and scientists, it is possible to recreate diverse plant and animal communities in a very agricultural landscape. While we are constantly trying to learn more about how exactly these species respond to restoration, it is important to reflect on these successes. Ecosystems continue to be mysterious in many ways, but understanding a little bit more about them may help preserve their majesty and diversity for the future. Pete Guiden's ongoing research on restoration ecology is supported with a Scientific Research Grant from the Friends of Nachusa Grasslands. The Nachusa summer science externship is supported by The Nature Conservancy. To get involved with the critical on-the-ground work at Nachusa, consider joining our Thursday or Saturday Workdays or giving a donation to the Friends of Nachusa Grasslands. Donations to Friends can be designated to Scientific Research Grants.
0 Comments
By Antonio Del Valle MS Student Spring has arrived, and with it we are in the middle of experiencing one of the many natural marvels at Nachusa: spring bird migration. Certain species of birds fly south for the winter to warmer latitudes (Florida, Mexico, and even South America) and then return to breed in northern latitudes during the summer. The specific reasons for migration depend on how far birds migrate. Short-distance migratory birds head south mainly for food. When the growing season ends here in Illinois, insects, seeds, and other food sources dwindle, which drives birds south to locations where food sources and open water are readily available. The logic and theory behind long-distance migrants (those that travel to Central and South America) appears to be more complex. According to a concise article by the Cornell Lab of Ornithology, the history of long-distance migration appears to be rooted in evolution. Birds that evolved to migrate long distances gained an advantage over birds that stayed in the tropics by producing more young via seasonally increased day lengths and food availability in northern latitudes. ![]() Yellow-rumped warblers (Setophaga coronate) have been passing through northern Illinois over the past couple weeks. These warblers over winter in southern US states and Mexico, and they breed as far north as Alaska and Newfoundland. They can be found this time of the year in the wooded areas of Nachusa, including Stone Barn Savanna. By the end of May they will have moved north to their breeding grounds. Although migration occurs twice annually (both in the spring and fall), it offers a chance to see some interesting bird species that do not spend much time in this area. Starting in March, we started to see a number of birds passing through Nachusa on their way north. Notably, whooping cranes (Grus americana) were observed among the larger groups of sandhill cranes (Antigone canadensis). These whooping cranes are a part of a recovering population of cranes that breed in central Wisconsin and over-winter in Florida. Thanks to conservation efforts, these federally endangered birds have started to recover (increasing from about 20 birds in the 1940s to about 600 today). Conservation efforts still continue for whooping cranes, and it is certainly a special treat to have them stopover at Nachusa. Besides cranes, high numbers of waterfowl were observed occupying the new wetland scrapes by the visitor center. In March and April there have been diving duck species observed, such as bufflehead (Bucephala albeola), ring-necked duck (Aythya collaris), and scaup. Here in April we are observing many more dabbling duck species like blue-winged teal (Spatula discors), hooded merganser (Lophodytes cucullatus), northern shoveler (Spatula clypeata), and wood duck (Aix sponsa). Though these species are visiting Nachusa now, many of them will continue northward to breeding grounds in the northern lakes of Wisconsin and Canada. As we progress through April into May, we will see more of our medium and long-distance migrants. These birds are making a long trek from Central and South America, sometimes flying long distances at once. One salient example of long-distance migration is the route of some ruby-throated hummingbirds (Archilochus colubris). These tiny birds are known to fly directly over the Gulf of Mexico from the Yucatan Peninsula to southern United States. That’s a 500 mile flight in approximately 20 hours! Though I haven’t seen any hummingbirds yet this spring, I bet there will be some in the area soon. As spring progresses, flowers bloom, and birds will continue moving northward. I hope you will be able to enjoy the wonders of Nachusa Grasslands and bird migration this spring. Citations & Resources:
Tony Del Valle's grassland bird research was supported in 2020 with a Scientific Research Grant from the Friends of Nachusa Grasslands. The Nachusa summer science externship is supported by The Nature Conservancy.
To get involved with the critical on-the-ground work at Nachusa, consider joining our Thursday or Saturday Workdays or giving a donation to the Friends of Nachusa Grasslands. Donations to Friends can be designated to Scientific Research Grants. By Jessica Fliginger Field Technician “One of my daily pastimes when the snow is on the ground is to take up some trail early in the morning, and follow it over hill and dale, carefully noting every change and every action as written in the snow. . . . The trail records with perfect truthfulness everything that it did, or tried to do, at a time when it was unembarrassed by the nearness of its worst enemy. The trail is an autobiographical chapter of the creature’s life, written unwittingly indeed, and in perfect sincerity.” — Ernest Thompson Seton, Animal Tracks and Hunter Signs, 1958 Winter is the best time of year to learn about what kinds of animals are around. Whether you are at Nachusa or in your backyard, a fresh blanket of snow can reveal the conspicuous story of an animal’s life through its tracks. Learning how to identify animal tracks and tracing their routes in the snow are exhilarating outdoor winter activities that anyone can do. It starts with using your wildlife detective skills to look up, down, and around at the surrounding environment for clues, such as tracks. You may be wondering where the best places are to look for animal tracks. Truth is, the morning after a fresh snowfall (about 1 to 2 inches), you can go just about anywhere to find them. I typically find plenty of prints by wooded areas with adjoining water sources, i.e. a stream, lake, or pond. If you are a beginner naturalist, I recommend staying near home or going to a place you are familiar with, such as a bike path, park, or even as close as your backyard. One hot spot I like to frequent is my bird feeder; look under your own feeder for evidence of birds, mice, and squirrels. If you are an experienced adventurer and like walking off the beaten path, I recommend previewing a map of the location you intend to search. There are a few useful tools you might want to consider bringing on your investigation: a measuring device, a field journal, a camera, and a guide to animal tracks. If you plan on venturing into unfamiliar territory, I suggest carrying a compass and flagging tape to mark your path — and don’t forget to collect it on your way back! Here’s a tip: If you ever find yourself lost, simply re-trace your own imprints back to the starting point. Most importantly, make sure to bundle up and bring extra clothes/layers. I recommend getting an early start and checking the weather forecast prior to heading out. Since you could be trailing an animal for a long distance, be conscious of the time to avoid being out too late or getting too cold or tired. When identifying an animal track, it helps to know what animals are present in the area. I recommend using the Nachusa Grasslands Mammal Inventory to narrow down your list of possible suspects. Commonly found mammal prints include coyote, fox, opossum, deer, raccoon, rabbit, mouse, and squirrel. Occasionally, bird tracks will show up, such as turkey, crow, pheasant, and duck. Ideally, you want to be able to identify an animal’s print before following its track. After locating a clear print, carefully examine your surroundings and write down any observational notes about the habitat in your field journal — this might yield additional clues as to the identity of your suspect. Keep an eye out for signs of the animal, specifically broken twigs, chunks of bark missing from trees, hair, or animal droppings, otherwise known as scat. Next, lay your measuring device down next to the print and record its length and width. If you prefer to take your time analyzing evidence in the warmth of your home, take a photo of the print with the measuring device next to it for scale to look at later. As you proceed down the trail, feel free to take multiple photos of the track for comparison or make a sketch of it in your field journal. As you study the print, you should be able to distinguish several characteristics about it, including the number of toes, presence of nails, depth of the print, and size and shape of the front and rear paws. Canine prints are quite easy to distinguish; they have claws and are oval shaped with four toes and a concave heel pad at the bottom. The way the toes and pad are arranged should allow you to draw an “X” through the print. Likewise, deer have distinct imprints comprised of a split hoof with two toes. Furthermore, understanding an animal’s walking pattern, or gait, will help aid in its identification. There are four basic walking patterns: zig-zagger, waddler, bounder, and hopper. Zig-zaggers, or perfect walkers, leave a zig-zag patterned track and are indicative of deer, fox, coyote, dog, and cat. Waddlers have wide bodies that seem to shift from side-to-side as they walk, creating a track that consists of four prints where the rear foot does not land in the print of the front foot. Examples of waddlers include raccoons, opossums, muskrats, beavers, and skunks. Bounders, such as weasels, have long skinny bodies with short legs that expand and contract, similarly to a Slinky®, as they bound through the snow. Their tracks look like a cluster of four paws spread about a foot apart between each bound. Hoppers look as if they are leapfrogging, and this can be found in smaller critters, including rabbits, squirrels, mice, and chipmunks. Learning how to identify animal tracks is great way to enhance your observational skills and spend time outdoors during winter. Nothing is more thrilling than identifying a set of mysterious tracks. Although they may remain out of sight, animals are everywhere — get out and look!
By Dee Hudson There are actually many mammals and birds active during the cold weather. What animals might you be able to see this winter? Today I’ll feature a few larger mammal species that I think you will enjoy and be most likely to see during a visit. I will also give you tips on where to look for these winter animals. Bison There is a very popular animal that draws the attention of most of our visitors, and that is our national mammal, the bison. The Nature Conservancy is committed to keeping the bison as wild as possible, so besides some minimal veterinary care during the yearly roundup, the bison breed, birth, feed, and care for themselves without human intervention. Our bison roam across 1500 acres of rolling landscape, so they may not always be visible. For your best chance to see the bison, bring a pair of binoculars and begin your search from the Visitor Center, an open-air covered pavilion that offers outstanding views of the surrounding grasslands, as well as the southern bison unit. Be sure to pick up a hiking brochure there, for the map inside indicates the bison unit locations. Many visitors can also experience a close-up view even from their cars. Just be sure to pull off to the side of the road and turn on your hazard lights. CAUTION: When a lot of snow is present, it is difficult to find parking or a pull-off. Be safe! Also, please be considerate of Nachusa's neighbors, of their property and road use. A six-foot fence surrounds the bison units. For visitor and bison safety, there is no admittance inside these bison units, by foot or by vehicle. Visitors must stay 100 feet from the bison at all times, even when separated by a fence. The bison look tame and gentle, but they are wild and unpredictable animals. Keep in mind that the adults weigh 1000-2000 pounds, are very agile, and can quickly turn and accelerate to 30+ miles per hour. Deer The white-tailed deer is another large mammal often seen at the preserve. Look for them to gather in the early morning or right before sunset. They can even be seen grazing near the bison herd. The deer enter and exit the bison units quite easily, either leaping over the fences or, more often, going under. The fence does not go completely to the ground, and this allows other animals to come and go. The deer tracks are very recognizable. They look like upside down hearts. Beaver Nachusa has beavers throughout the preserve, for these masters of engineering have been drawn to the restored wetland habitats. In winter the beavers are not hibernating, but are snuggled inside their well-insulated lodges. They have stashed a food cache of small twigs and branches in the mud at the bottom of their pond, and they use their lodge’s underwater entrance to access the supply throughout the winter. The water is not too cold for them, even in the coldest Illinois winters, for they have a thick and very warm winter coat. In January they may begin to mate, with their young born in springtime. While the water is frozen, the beavers are unlikely to be seen. However, evidence of their presence in the landscape certainly can, if you know where to look. If you look north from the Visitor Center you can spot the lodge in the restored wetland. It looks like a mound of sticks, with some plants growing on top. Other signs of beaver presence to look for are gnawed trees and beaver stumps.
Red Fox A fox’s fur is so warm that it has no problem curling up on the snowy ground. If its nose becomes too cold, the bushy tail wraps around and makes a great facemask. In the winter, the fox will mainly eat other mammals, such as rabbits and rodents, and of course, it won’t pass up any carrion. In Illinois mating occurs during the winter months, mainly January and February. The young will be born in an underground den in March and April. Look for fox in the prairies and along the woodland edges, and it’s best to begin your search close to sunrise or sunset, because they are mainly nocturnal. Opossum The opossum is the only marsupial species (a mammal with a pouch) native to Illinois, and also to North America. That alone makes this mammal interesting and unique. Then you see that they have an opposable toe and a nearly furless prehensile tail, used to grasp things and climb. With such a naked tail, it might be expected that they hibernate during Illinois winters, but they do not. However, they do stay in their dens during really cold weather, venturing out on warmer winter days. Since opossums are omnivores, winters at Nachusa provide a lot of small mammals to eat; they also eat a lot of road kill (and then occasionally become road kill themselves). For shelter, they may find a hollow log or use one of the stacked brush piles. Opossums are nocturnal, so they’re most likely to be seen in the early morning or before sunset. Look for opossums in Nachusa’s wooded areas near ponds and creeks, for they prefer to have a den near water. Coyote Many Nachusa volunteers have enjoyed a choir of coyote voices during the nighttime hours — yips, barks, and howls — so many communicating at once, that it is hard to tell how many are present. Coyotes are very active at Nachusa during the night, probably feasting mainly on the preserve’s rabbit population, as well as other small mammals. As with many of the other animals discussed, for the most success, look for the coyotes in the early morning hours or before sunset. Look for them running along the vehicle tracks that course through the units. As seen by the coyote footprints and scat, humans are not the only mammals that like to use these vehicle tracks. Come visit the preserve this winter and enjoy Nachusa’s wide-open spaces and special creatures. Let us know in the comment section whether you see any of these mammals. Please visit the Friends of Nachusa Grasslands website for the preserve's full mammal inventory list.
By Elizabeth Bach Ecosystem Restoration Scientist With 2020 drawing to a close, Nachusa science has several accomplishments to recognize:
Science PublicationsScientific publications are the product of years of hard work, collecting and analyzing data as well as writing the paper. I’d like to use this blog post to highlight some of this recently published research. It has been an exciting year for Dr. Holly Jones, Dr. Nick Barber, and their lab groups. Holly and Nick began research at Nachusa Grasslands in 2013 as new faculty at Northern Illinois University (Nick is now at San Diego State University). Their work investigates restoration outcomes related to planting age, prescribed fire, and grazing. In 2020, the team has published five papers:
The Wildlife Epidemiology Lab, led by Dr. Matt Allender, at the University of Illinois Urbana-Champaign has included Nachusa Grasslands as one of their sites in on-going health evaluations of wild turtle populations. Research scientist Dr. Laura Adamovicz has published three papers from her PhD dissertation:
Devin Edmonds, who is a graduate student with Dr. Michael Dreslik at UI-UC and the Illinois Natural History Survey, examined Reproductive output of ornate box turtles (Terrapene ornate) in Illinois, USA. This is the first assessment of ornate box turtle reproduction in Illinois. Meghan Garfinkel earned her PhD from University of Illinois-Chicago this spring. Her research quantified crop pest suppression by songbirds. She found Birds suppress pests in corn but release them in soybean crops within a mixed prairie/agriculture system. Additional data is needed to see if these results can be applied more broadly on the landscape and across years. These initial results indicate birds could provide sizable services to agricultural land around prairie habitat. Physlis Pischl, a PhD student at Northern Illinois University, performed an elegant analysis of Plastome phylogenomics and phylogenetic diversity of endangered and threatened grassland species (Poaceae) in a North American tallgrass prairie. The work showed endangered and threatened grass species were more closely related than expected and likely evolved together in specific grassland habitats. Destruction of those habitats have resulted in many closely related species all being endangered and threatened. Read more about this study. John Vanek shared his work with Dr. Rich King surveying snake communities at Nachusa in this recent blog. John also published Observations of American Badgers, Taxidea taxus (Schreber, 1777) (Mammalia, Carnivora), in a restored tallgrass prairie in Illinois, USA, with a new county record of successful reproduction. While it is no surprise to find badgers at Nachusa, this is a new confirmed report of breeding badgers. Hana Thixton found Further evidence of Ceratobasidium serving as the ubiquitous fungal associate of Platanthera leucophaea (Orchidaceae) in the North American tallgrass prairie (open access) in her MSc research with Dr. Betsy Esselman at Southern Illinois University Edwardsville. Ceratobasidium fungi were by far the dominant fungal partner for EPFO, and genetic diversity of those strains was limited, indicating the fungal partners were consistent across sites. Drew Scott found Plant diversity decreases potential nitrous oxide emissions from restored agricultural soil in this research as part of his PhD dissertation at Southern Illinois University Carbondale. In this study, he found nitrous oxide emissions, a potent greenhouse gas that contributes to climate change, from soils at Nachusa with high plant diversity were about seven times lower than from areas with low plant diversity. View the complete list of Nachusa publications. By Dave Brewer and Dee Hudson Nachusa Stewards Nourished by the fresh air and the beautiful and ever–changing scenery, Nachusa’s stewards tend and restore the land. They work within a vibrant volunteer community, forging lasting and strong relationships as advocates for land conservation. Nachusa’s stewards are physically active individuals who love working outdoors year-round. These volunteers are passionate about conservation and are committed to creating and restoring habitats for native species. WHO CAN BE A LAND STEWARD AT NACHUSA? Any dedicated and interested Nachusa volunteer or group of volunteers can steward a unit in the preserve. A steward is responsible for all the management in their land unit: weed removal, seed collection, planting or over seeding, and brush removal. They also lead volunteer workdays throughout the year. No prior accreditation or related degrees are required, just a willingness to learn from others (staff and mentors) and share experiences and insights with fellow enthusiasts. Meet Dave Brewer, a frequent Nachusa volunteer who has recently decided to steward two units at the preserve. What first brought you to volunteer at Nachusa Grasslands? I began volunteering in the late 1980s when my wife and I brought our student groups here for Saturday workdays. I had a very long hiatus from volunteering until I retired last year. After retirement, I took the University of Illinois extension course to be an Illinois Master Naturalist and one of our field trips brought us here. It rekindled my love for the place, and I became a regular volunteer and completed the fire training to assist with the controlled prairie burns. I’ve been a regular volunteer for almost a year. The people here are very welcoming to newcomers and are willing to share their time and knowledge to help me as a new steward. They are also tolerant of my beginner mistakes and lack of knowledge. It makes it that much more of a pleasure to come and work here. Tell us your background and what inspires your interest in restoration. I was a science teacher for over thirty years, and I’ve always hiked and camped and enjoyed being outdoors. I feel a strong sense of place here and a feeling of connection to the prairies, marshes, and groves of northern Illinois. With this, for me, comes a need to learn more about them and be more involved in their conservation. We need wild places, and these wild places need our help. How did you decide to become a steward? I could have continued helping maintain other stewards’ units forever. Those days were always fun and interesting and gave me a sense of accomplishment and of helping with something important and crucial: prairie restoration. Dee Hudson, the steward of the Thelma Carpenter Prairie, where I spent much of my time last fall, put the idea of stewarding my own unit into my head and gave me a tour of available units. It was a way to be even more connected to the landscape, a chance to learn about and be involved in the cycles and seasons of nature. Above all, it was a chance to be involved in the great science experiment, restoration at Nachusa Grasslands. What are some of the exciting features of Les Lep and Kittentail Units? I’m drawn to the small sandstone outcrops and gravelly prairie knobs. I have a degree in geology, so maybe it relates to that, but I love those areas of the preserve. The remnant prairie knobs are sacred ground: you are standing amidst historical plant communities which are hundreds of years old. It is a glimpse into what northern Illinois was like prior to European settlement and the vast agricultural plantings. What are the restoration challenges in the Les Lep and Kittentail Units? My first unit is the Les Lep Unit, which I chose because it’s in the middle of it all, and you really feel a part of something much larger. It has a two populations of the rare bush clover, Lespedeza leptostachya and is a popular area for the uncommon ornate box turtle. These are always on my mind when planning what work to do in the area. There is also a healthy population of tenacious birdsfoot trefoil, which is a very invasive weed which needs to be removed. My second unit is the Kittentail Unit, which is on the perimeter of the preserve and very much hidden from view. I chose this area to steward because I soon learned that being in the “middle of it all” also means that the bison are often hanging out in the place you wanted to work. Kittentail Unit gives me another place to go when the bison are using Les Lep. The big problem there is dealing with the woody invasives that want to creep in from the adjacent lands. This will keep me busy in the winter months, I suspect. What are some new techniques or concepts you've learned while becoming a steward? A steward, Jay, who has been here as long as I remember said to me, “Prairie restoration is not just science; it’s also an art.” You can sense if a steward understands this by looking at their plantings. One doesn’t simply collect seeds on a given list and plant them where you think they need to go. You do need to get a feel for the different microenvironments each prairie knob and grassland represent. Pay attention to the soil. Pay attention to the surrounding areas. Pay attention to where the plants are found on the slopes. Jay also said to let Swink and Wilhelm’s Plants of the Chicago Region be your bible for prairie plantings, so I’ve been slowly working my way through this giant book. ![]() What do you enjoy most about being a steward? I just love walking around exploring, observing, and bird watching. I enjoy trying to learn all the new plants I’m noticing and learning their histories and Latin names. It’s a challenge and an honor to play a part in trying to expand the populations of the rare plants here and to help the prairie grow. It’s also a chance to build habitat for the turtles, butterflies, birds, and other prairie-dependent animals. There is the sense of being part of something much bigger than myself, of being involved in a project which will be going on long after I’ve passed, a project benefitting future generations. HOW CAN I BECOME A VOLUNTEER LAND STEWARD?
It’s easy! Begin by volunteering frequently to learn Nachusa’s restoration process. Regularly attending Thursday and/or Saturday volunteer workdays is the best way to familiarize yourself with our management practices. Then notify a staff member or workday leader that you want to become more involved by working alongside more experienced stewards. When you are ready, our project director will show you various land units that need special attention, and you can choose one area to exclusively tend or restore. Staff and stewards will continue to support your efforts and guide you until you are confident on your own. After sufficient mentoring, stewards set their own objectives (consistent with science and Nachusa objectives) and their own schedules. If you would like to begin the road to stewardship at Nachusa Grasslands, consider joining our Thursday or Saturday Workdays. Learn more about:
By Antonio Del Valle MS Student ![]() Sunrises over the tallgrass praire were a wondrous daily event to behold while surveying at Nachusa Grasslands. This summer, as part of my graduate research project at Northern Illinois University, I had the opportunity of studying some of the many bird species that call Nachusa Grasslands home. Luckily, surveying birds is an activity that you can do by yourself, which was a key factor in being able to safely conduct my research project in the midst of a global pandemic. The focus of my research is to determine how birds that breed on the prairie are impacted by some of the large scale disturbances on the prairie landscape—mainly bison herbivory and prescribed fire. Different bird species prefer different types of prairie. Species such as killdeer (Charadrius vociferous) and upland sandpiper (Bartramia longicauda) prefer shorter prairies that, at Nachusa, are maintained through the eating of plants by bison and frequent prescribed fires. In contrast, species such as Henslow’s sparrow (Centronyx henslowii) and sedge wren (Cistothorus platensis) prefer dense, tall prairies that are maintained through infrequent disturbances. ![]() A figure describing the relationship between different grassland bird species presence and months since a disturbance event has occurred on the prairie. Grassland birds are a suite of species that specialize in using prairie habitat as their preferred place to breed and raise young. These species are of particular interest to me because grassland birds have experienced drastic population declines. A recent paper published in Science shows just how serious this decline has been. ![]() Bird populations in North America have declined by three billion individuals since 1970. Grassland birds in particular have declined more than any other group of birds. But it is not all doom and gloom for these grassland birds. Thanks to the hard work put into the restoration, management, and conservation of the tallgrass prairie habitat at Nachusa Grasslands, there are bountiful places for these types of birds to breed during the summer. My research aims to help us understand more about these declining species. Preserves such as Nachusa Grasslands give me an opportunity to observe them in areas where they are still relatively prevalent. ![]() High quality prairie restorations take a lot of hard work but provide great habitat for many declining and rare plants and animals. A typical morning of surveying birds starts out by waking up well before sunrise. I set my schedule to arrive to Nachusa around 5:30 AM in order to start surveying during peak bird activity. Coming prepared with coffee and waterproof clothes were key factors in staying awake and dry while traversing the dew-soaked prairie. Upon arriving to a survey point at the preserve, I begin surveying birds via sight with my binoculars, as well as by sound. I record all of the birds I see and hear into my field notepad for five minutes. While surveying, I record the number of individuals of each species, estimate their distance from me, and record any breeding behaviors that are displayed. Surveying in this systematic fashion allows me to look at the data later and compare what birds were seen in what areas, how many were present, and whether I can confirm that they were breeding (according to eBird’s breeding bird behavior codes). Additionally, this format allows me to compare my data to other data sets across different years and potentially different preserves/sites. ![]() The depth of the thatch layer covering the ground is measured by using a ruler. This layer of dead plant material is important for certain species that require cover. In addition to surveying birds, I also survey vegetation and bison density through dung counts. Vegetation surveys involve measuring vegetation height, thickness of thatch layer, and percent cover of plant species. These measurements give me quantitative values to describe the vegetation structure within different areas of the preserve. Bison density is calculated through systematically counting units of dung at my survey locations. Looking at bison density in different areas of the preserve can help show where bison are spending most of their time (and eating more plants). One of my favorite birds to observe this summer was the Henslow’s sparrow. This secretive sparrow is rarely seen on the prairie, as it spends most of its summer down low in the grasses and only pops up once in a while when singing or flying. The Henslow’s sparrow song is unique as well. Cornell University’s All About Birds online field guide describes it as the simplest and shortest song of any North American bird, and to me it sounds like a faint hiccup. These sparrows have a greenish wash on their face and fine streaks on their flanks, which help to distinguish them visually from other sparrow species if you have the pleasure of catching a glimpse of them. They, along with many of the other grassland breeding birds, are now on their way back to their overwintering grounds in Central and South America. The prairies will be noticeably quieter until they begin to return in the spring again. I’m looking forward to analyzing the data collected this summer and preparing for next year’s field season over the next few months. I hope that my research can help provide knowledge to aid in the continued conservation of these grassland bird species. Nachusa Grasslands is a wonderful place to observe these birds and many other plants and animals in their native habitat. Citations & Resources: Fuhlendorf, S.D., et al. (2009). Pyric herbivory: Rewilding landscapes through the recoupling of fire and grazing. Conservation Biology 23:588–598. Rosenberg, K.V., et al. (2019). Decline of the North American Avifauna. Science 366(6461):120-124. Tony’s ongoing graduate research is supported by the following sources:
By Susan Kleiman Nachusa Volunteer Shrubs and vines can sometimes be underappreciated, or worse, unknown. I will present a blog now and then on those species growing at Nachusa Grasslands. I am starting with five shrubs that we have good photos for, although we have identified at least 45 shrubs species and 20 vines (some woody and some herbaceous). By shrub I mean woody plants that attain less than 20 feet in height and often have multiple stems rising from the same roots. I will not include species that normally grow into trees, such as oaks (these and other trees can be shrub-like in form due to repeated fires causing them to re-sprout with multiple stems). I seek to understand the shrub component of Nachusa more fully. I do think from my reading and observation that many of the shrubs were historically present in our area in thickets or along waterways, not as single bushes dotting the prairie. I think we should carefully plant the seeds of shrubs in appropriate places. Some bird species, such as Bell’s vireo, yellow-breasted chat, willow and alder flycatchers, cedar waxwing, common yellowthroat, and indigo bunting, as well as others, particularly need shrub habitat. Shrubs are a major component of Nachusa’s grassland ecosystem in certain places. The Nature Conservancy calls our region the Prairie-Forest-Border Ecoregion. The State of Illinois calls our natural division the Rock River Hill Country-Oregon Section. Writing in the Geological Survey of Illinois in 1873, James Shaw said of Lee County, “The north-western part of the county, where Rock river cuts across the corner, is rough, hilly, and in places picturesque, especially in the vicinity of that stream. The hills and ravines in this locality are partially covered with dense underbrush and scattering timber.” In 1860 Dr. M. S. Bebb described the flora of Ogle County in a letter to a friend, which was also shared in a publication called Prairie Farmer. He says, “The rise at the border of the valley is usually covered with forest trees which have here found protection from the prairie fires, such as Quercus macrocarpa, Tilia Americana, &c with a variety of undershrubs and herbaceous plants, common everywhere in the woods of this latitude...” In the part about the groves he says, “Beneath we find an abundant growth of shrubs, principally Hazel (Corylus Americana) and Cornus paniculata*, the Hazel often extending out into the prairie for a mile or more, forming what is called a 'Hazel ruff'.” Mary Sackett wrote in her journal in May of 1842, “Sometimes our road lay across the prairie, sometimes through the thickets where the crabapples, choke cherries, strawberries and other fruits were in bloom, making the air very fragrant.” Some of our shrub species seem weedy and others difficult to grow, or even rare. This is likely due to the past disturbances such as plowing, over grazing, and over shading, or lack of disturbance by fire. * Cornus paniculata is now Cornus racemosa, gray dogwood. Ninebark Physocarpus opulifolius, Rose Family Rosaceae This is a gorgeous, widespread native shrub. I just saw some on the Olympic Peninsula. Its genus name Physocarpus is Greek, meaning “fruit like a pair of bellows.” The species name opulifolius is Latin, meaning “splendid foliage” or having the leaves of Viburnum opulus (referring to a European plant, Guelder rose). Luckily this species is hard to misidentify here at Nachusa Grasslands. Besides having good nectar for bees and butterflies, the large landing platform of the flower clusters is perfect for beetles, and the pollen is easily available to their chewing mouthparts. The clustering fruits have unique bladder coverings, and in fall the fruit and leaves can often be quite colorful. The common name of ninebark refers to the papery and shreddy bark of older branches. In open growing situations the shape of this shrub tends to rounded with weeping branches drooping to the ground. It is said it reaches a maximum height of ten feet, but I have not seen one taller than about seven feet here. At Nachusa we have a few ninebark here and there, often mixed with other shrub thickets and fence lines with such species as American plum and dogwood. It is said that it prefers stream edges, gravel bars, moist thickets, but it is also found in dry areas here. Many cultivars of this species have been developed by plant nurseries. Prairie Willow Salix humilis, Willow Family (Salicaceae) The genus Salix is Latin for willow, and humilis is also Latin, meaning low, humble, grounded, or from the humus (earth). I have not seen it taller than three feet here, and I can only think of five clumps outside of the one next to the Headquarters parking lot, so look out for this special bush, usually on dry remnant hills. Deer and rabbits will browse the twigs and leaves. The catkins and nectar are very important to a great many insects in the spring. Willow bark is the original aspirin, in use for at least 3500 years! Common Elderberry Sambucus canadensis, Moschatel Family (Adoxacea, formerly in Caprifolicaeae) Sambucus is Latin for elder-like, perhaps also derived from Greek sambuce, an ancient wind instrument, referring to the use of the stems to make whistles after removing the pith. Sometimes this shrub is called American elder. Elderwood in Europe was used to make a kind of harp called a sambuca. Canadensis refers to Canada, the country where this species finds its most northern distribution. This species extends all the way south to Bolivia. Elderberry forms colonies by root suckers and is most often found on our fence lines. The bark of the stems has distinctive, raised dots (lenticels) and leaf scars with connecting lines between the opposite compound leaves (not to be confused with ash species, Fraxinus). I have noticed that the cluster in my yard flowered most profusely the same year it had been burned, rather unlike many other shrubs we have, which can take several years post burn to flower. The flowers can be used to make a lemon-scented drink. But the berries are the best known part of the plant, used in wines, jams, jellies, and pie fillings. The flowers attract a small variety of insects. Leaves and twigs are browsed by deer, and the fruit is eaten by all kinds of birds and other animals. Unripe fruit, leaves, and stems are toxic to humans. Cooking the ripe fruit destroys the alkaloids. Smooth Sumac Rhus glabra, Cashew family (Anacardiaceae) This family of plants produces urushiol, an irritant, and includes poison ivy, mango, and cashews. Smooth sumac does not seem to irritate. Rhus is the classic Latin name for this genus, while glabra is Latin for smooth. This is Nachusa Grasslands’ only extant Rhus, as far as I know. We have, however, planted fragrant sumac (Rhus aromatic) in some areas. Smooth sumac is claimed to be the only native shrub found in each of the lower 48 states. Smooth sumac tends to grow in large clones that can sometimes shade out other species. Our fires often keep it shorter and sparse enough to allow prairie under the stems. In some places stewards have tried to reduce sumac stems through basal bark treatment. Individual shrubs are either male or female. The flowers, pollinated primarily by bees, also attract a number of beetles and bugs. It seems that the leaf beetle, Blepharida rhois, is the only insect that can eat the leaves which contain strong tannins, phytols, and compounds related to gallic acids. The beetle larva puts its concentrated feces on its back to deter predators. At Nachusa, smooth sumac is the last shrub to leaf out in the spring and one of the first to lose chlorophyll in the fall, usually turning a brilliant red. The bright red fruits have a lovely lemon taste and tartness. They can be eaten and used to make a refreshing drink, and in fact have been for thousands of years. Many animals eat the fruit as well, and various natural dyes have been made from all parts of the shrub for coloring cloth and plant fibers. Wafer Ash or Common Hop Tree Ptelea trifoliate, Citrus family (Rutaceae) Ptelea is Greek for elm, alluding to the winged fruits similar in appearance to elm seeds. Trifoliate is Latin referring to the three leaflets of each leaf. It is neither an ash nor a hop, although the strong odor of the plant is similar to, but not as nice as, the beer-making hops. The fruits were tried as a hop substitute to no lasting effect. The pale greenish-white flowers attract bees in the spring. The wind-carried seeds turn brown in the fall and persist into winter. Each wafer actually has two seeds, unlike the wafers of elms. This species, along with one other at Nachusa, prickly ash (wait for my next blog), are the only hosts on the preserve to the larva of the giant swallowtail butterfly, Papilio cresphontes. This shrub is quite common here, tending towards weediness, in my opinion, as it pops up all over the prairie. It is usually no more than eight feet tall with multi-stems. I have occasionally seen them here or off site as tree size, six to eight inches in diameter and 20-30 feet tall. This is in situations without frequent fire. Sources: Hyam, Roger and Richard Pankhurst. Plants and Their Names: A Concise Dictionary. New York: Oxford University Press Inc, 1995. Kurz, Don. Shrubs and Woody Vines of Missouri. Jefferson City, MO: Conservation Commission of the State of Missouri, 1997. Petrides, George A. A Field Guide to Trees and Shrubs. New York: Houghton Mifflin Company, 1986. White, John. Rock River Area Assessment, Volume 2. Springfield, IL: State of Illinois, 1996. Wilhelm, Gerould and Laura Rericha. Flora of the Chicago Region: A Floristic and Ecological Synthesis. Indianapolis: The Indiana Academy of Science, 2017. Useful website: https://www.illinoiswildflowers.info/trees/tree_index.htm If you would like to play a part in habitat restoration for native shrubs at Nachusa Grasslands, consider joining our Thursday or Saturday Workdays, or give a donation to the Friends of Nachusa Grasslands. Donations to Friends can be designated to support the ongoing stewardship at Nachusa.
By Charles Larry Nachusa Volunteer The sound of the sandhill crane seems to echo across an immense gulf of antiquity. Cranes evolved during the Eocene (56-33.9 million years ago). The earth was warmer and wetter during this time, and in North America, with vast areas of prairie, savanna, marsh, and shallow inland seas, it was ideal habitat for the ancient ancestors of modern cranes. This early crane was likely a relative of the crowned crane now found in Africa. Fossil remains of this early crane have been found in North America, dating some 10 million years. But then the climate in North America started to cool, eventually bringing about the Ice Ages. These events saw the disappearance of this early crane on the continent. At some point a relative of the modern crane, one suited for cooler climates, evolved here. The earliest fossil of this later crane was a bone almost identical to that found in modern sandhills. This fossil was found in Florida, dating back 2.5 million years. Modern sandhill cranes (Grus canadensis) are divided among two and six geographical subspecies, depending on sources. Generally, there are the greater and lesser sandhills. Nachusa Grasslands has had sandhill cranes stop over for brief periods over several years. In August of 2018, even a pair of whooping cranes stopped and then moved on! As far as is known, this is the first time that a pair of sandhills have nested and raised two colts (as the young sandhills are called) at Nachusa. It is usual for sandhill cranes to lay two eggs, a few days to a week apart, but it is rare that both colts will live to fledge. Some reasons as to why only one colt survives are various predators, lack of sufficient food, and sometimes the aggression of the older crane toward its slightly younger sibling. At Nachusa both of the young have fledged and are flying. Sandhill cranes usually mate for life. They become sexually mature at two years old but four or five years old is more likely to be when mating begins. Sandhills are well known for their "dancing" during mating season. This behavior is not fully understood, as cranes of any age may dance at times not related to breeding season. It is thought to also be a way of working off aggression. Both sexes participate in the building of the nest, constructed in or near water. Nests are composed of plant material found near the nesting site, such as cattails, sedges, rushes, and grasses. Nests can be six feet in diameter. At breeding time both sexes "paint" their feathers with clay and mud. The birds are normally gray in color, but the painting changes the feathers to brown. This is thought to be a camouflaging technique to blend in with the nesting site. Both parents incubate the eggs. While one sits on the nest, the other is either standing guard or gathering food. The female usually sits on the nest during the night. Hatching is about a month after laying. After hatching, the cranes abandon the nesting site, moving to a hidden spot somewhere still near water. The parents are fiercely protective of the young. Many predators are a danger to either the eggs or the colts. Among them are coyotes, foxes, raccoons, owls, and various hawks, all of which inhabit Nachusa Grasslands. Sandhills eat a variety of food, from insects such as grasshoppers or dragonflies, to aquatic plants and tubers, to small mammals such as mice, to snakes and worms. They will even eat the eggs of other birds, such as red-winged blackbirds, rails, and ducks. More recently, sandhills have learned to forage in cornfields and will often flock in vast numbers doing this. During breeding season, they are very territorial with an average territory range of about 20 acres. Until the cranes abandon the nesting site, where they are more or less isolated, they will defend this territory from other sandhills and predators by various aggressive displays and even fighting. By late summer the sandhills will probably move to an area where there is a larger crane population and more abundant food to fatten up for migration, which will happen sometime in the fall. The juveniles will stay with the parents during migration and through the winter. Sometime in the following spring they will separate from their parents and go out on their own. The main winter flyways for migration in this area are either south to Georgia or Florida or over to Texas. Sandhill cranes are threatened, as is true of cranes the world over. Climate change is one major threat. Droughts have become much more frequent, and wetlands are disappearing. In some states cranes are hunted. In the past, this resulted in the extinction of sandhills from Washington State in 1941. They have now been reintroduced to this state in small numbers. Farming conversion to incompatible crops (soybeans) over crops like corn also threatens cranes. Probably the biggest threat is from loss of habitat from urbanization and development. The sandhill crane is a magnificent bird. It would be tremendously sad if someday the sandhill crane were to join the thousands of species disappearing from our planet. To hear no more the sound of this bird, which author Peter Matthiessen says is "the most ancient of all birds, the oldest living bird species on earth." Sad indeed. Sources: Johnsgard, Paul A. A Chorus of Cranes: the Cranes of North America and the World. University of Colorado Press, 2015. Forsberg, Michael. On Ancient Wings. University of Nebraska Press, 2004. Matthiessen, Peter. The Birds of Heaven, North Point Press, 2001. Useful websites: If you would like to play a part in habitat restoration for sandhill cranes at Nachusa Grasslands, consider joining our Thursday or Saturday Workdays, or give a donation to the Friends of Nachusa Grasslands. Donations to Friends can be designated to support the ongoing stewardship at Nachusa.
|
Blog CoordinatorDee Hudson
I am a nature photographer, a freelance graphic designer, and steward at Nachusa's Thelma Carpenter Prairie. I have taken photos for Nachusa since 2012. EditorJames Higby
I have been a high school French teacher, registered piano technician, and librarian. In retirement I am a volunteer historian at Lee County Historical and Genealogical Society. Categories
All
Archives
February 2023
|
CONNECT WITH US |
2075 Lowden Road | Franklin Grove, IL 61031 | Contact Us
|